

Recent Developments for an Orbiting Sample (OS) Container for Potential Mars Sample Return

Aaron Siddens*
Scott Perino
Tom Komarek

Jet Propulsion Laboratory, California Institute of Technology *aaron.j.siddens@jpl.nasa.gov

International Planetary Probe Workshop 2018

June 11th – 15th 2018

© 2018 California Institute of Technology, Government sponsorship acknowledged

Potential Mars Sample Return Overview

MAV OS Payload System (MOPS)

Mars Formulation

Aero-Thermal Structure (ATS)

Protects the OS from aerodynamic & thermal loads, also allows OS canister insertion & ejection

OS Mechanical Support Structure (OMSS)

Supports OS during MAV launch and ejects OS into Mars Orbit

Orbiting Sample (OS)

Holds & protects tubes, Surface plating & beacon ensure OS can be recovered in Mars Orbit

Structures

ConOps

1. Insert & secure OS-canister

2. Prepare and launch

3. Eject OS into Mars orbit

Pre-Decisional: For Planning and Discussion Purposes Only

Mars Formulation

- Requirements for OS-to-OMSS connection
 - Strong enough to withstand heavy random vibe loads during Mars Ascent; random vibe analysis indicates OS pulloff load to be around 15 kN
 - Allow for controlled, reliable OS release
 - Require no positive features on the OS
- Most concepts require dedicated interface features on the OS itself;
 therefore, the OMSS design directly influences the OS design
- For simplicity, desire to have single separation mechanism
 - Need axial and lateral compliance to avoid over-constraining
 - Two suitable approaches identified; several concepts explored
 - 1. Through-cable with cable cutter
 - 2. Spring-mounted frangibolt

Frangibolt Mounted on Belleville Springs

Frangibolt Mounted on Array of Compression Springs

Pre-Decisional: For Planning and Discussion Purposes Only

OMSS Overview

- Latest design uses a single frangibolt suspended on Belleville washers
 - Components sized to carry 15 kN peak load safely
- OS interfaces with the MOPS saddle at four locations
 - Secure interface with the Frangibolt
 - Loads reacted at 3 cup-cones
- Cups sit on flat part of OMSS cone
- Lateral loads may induce limited slip, which then gets reacted by saddle cones

MOPS Structures & ConOps

Mars Formulation

Aero-Thermal Structure (ATS)

Protects the OS from aerodynamic & thermal loads, also allows OS canister insertion & ejection

OS Mechanical Support Structure (OMSS)

Supports OS during MAV launch and ejects OS into Mars Orbit

Orbiting Sample (OS)

Holds & protects tubes, Surface plating & beacon ensure OS can be recovered in Mars Orbit

Structures

ConOps

1. Insert & secure OS-canister

2. Prepare and launch

3. Eject OS into Mars orbit

F

OS Topology Optimization

- Goal: Minimize Orbiting Sample (OS) mass/weight
 - 1 kg mass savings for the OS could save 5 kg for the MAV and 20 kg for the Lander
- First target for topology optimization (top-opt): Canister body
- Utilizing Sandia National Lab code Plato for top-opt
- OS assembly is the logical first load case to examine
 - Tubes clamped between canister and AI foam during assy

Initial Top-Opt Results

- Ran code in "compliance minimum" mode
- Volume fraction of initial total space: 0.25
- Optimized mass: 1.13 kg
- Tree-like structures "growing" from perimeter
- Dome-like interior profile

Load distribution around socket Total load per socket = 300 N

Section cut view

Pre-Decisional: For Planning and Discussion Purposes Only

Initial Top-Opt Results

Mars Formulation

Current

Optimized

Initial Top-Opt Results

Metric	Limit	FS	Reference	Optimized
Peak VM Stress	200 MPa	1.25	202 MPa (MS = -0.21)	26 MPa (MS = +5.2)
Peak Displacement	1.5e-4 m	1.0	9.4e-4 m (MS = -0.84)	2.2e-5 m (MS = +5.8)
Weight	-	-	1.22 kg	1.13 kg

Pre-Decisional: For Planning and Discussion Purposes Only

Summary and Next Steps

- OS attachment to the MAV is fully conceived and can withstand the strong vibe loads experienced during MAV Ascent
- Initial OS topology optimization results are promising and provide insight into what a more efficient OS canister body design may look like
- Given the large positive margins in the OS canister body, further mass reduction may be possible
- Next, impact analysis using an explicit FEA code will be incorporated to assess the geometry resulting from topology optimization
 - Limiting load case for the OS is likely impact; needs to be assessed
 - LS-DYNA models exist, and modeling using the SNL code Sierra is in development
 - Explicit FEA cannot be incorporate directly into the optimization process; will mesh geometry resulting from optimization and incorporate into existing analyses

THANK YOU FOR LISTENING!

Recent Developments for an Orbiting Sample (OS) Container for Potential

Mars Sample Return

Aaron Siddens*
Scott Perino
Tom Komarek

Jet Propulsion Laboratory,
California Institute of Technology
*aaron.j.siddens@jpl.nasa.gov

International Planetary Probe Workshop 2018

June 11th – 15th 2018

BACKUP

Mars Formulation

Mass estimate: [9.50] kg

